
Adversarial Manipulation of Learning in Linear-Quadratic
Zero-Sum Differential Games via Cost Poisoning

Son Tung Do, Gabrielle Ebbrecht, and Juntao Chen
Department of Computer and Information Sciences, Fordham University, New York, NY 10023

E-mail: {sdo3, gebbrecht, jchen504}@fordham.edu

Abstract—It is important to study attacks on games to gain
insights into control system vulnerabilities and better understand
how adversaries may optimize their malicious behavior to evade
detection. Learning games are susceptible to a number of attacks,
including deceptive attacks that misguide an algorithm to learn
from inaccurate data. This work investigates policy poisoning
attacks in a linear-quadratic (LQ) zero-sum differential game in
which two players learn their control policies from batch data.
Acting as an adversary, we design malicious policies to manipulate
cost measurements in the data before players begin the learning
process with the aim of demonstrating vulnerabilities to cost-
poisoning attacks and their effects on compromised systems. The
poisoning strategy is formulated as an optimization problem that
includes a constraint on deviations from original batch data as a
means to avoid detection. We leverage case studies, including a
pursuit-evasion game, to further evidence attack feasibility and
impacts.

I. INTRODUCTION

In the game of chess, one of the most well-known examples
of a zero-sum game, the sum of the payoffs for all players
is constant, and any one player’s gain directly comes at the
expense of another player. There is a clear winning condition,
a checkmate, where one’s victory seals the other’s loss. A
differential zero-sum game would further involve continu-
ous strategic decision-making and dynamic interaction where
player strategies directly influence the system, in contrast to the
concrete steps and finite nature of chess. In cybersecurity con-
texts, differential games can model antagonistic dynamics to
facilitate strategic planning. Linear-quadratic games, a subclass
of differential games, are commonly used to model resource
management and economic control in dynamic markets, and
solve optimal control problems in the field of engineering.
These dynamic decision-making problems are distinguished as
having linear dynamics and quadratic cost functions.

For a control system to work well in dynamic environments,
it is essential to establish a preferred path and regularly adjust
system inputs in order to follow the predefined trajectory. In
games, this allows players to adapt to changes in state. For
example, in the context of cruise control, the control system
must account for changing road conditions in adhering to a ve-
hicle’s desired speed. To do this, the control system adjusts its
inputs, or its acceleration, based on environmental factors like
inclines and slopes. This can be achieved via implementation
of a linear-quadratic regulator (LQR) controller and application
of filters to yield accurate state estimates [1], [2]. In cases
like this, it is important to consider the cost of applying the

control input as the state varies over time. The control applied
should also adhere to objectives like resource conservation, or
a defined schedule, which can be accomplished by learning a
control policy that optimizes cost. When little is known about
the given environment, batch data from an existing system is
useful for estimating system and cost matrices.

Policy learning in observed games, such as the famous two-
player zero-sum game, is an interesting application of this
scenario that is widely used to model economic situations
and military conflict. In highly competitive environments like
these, the cost is a crucial element in the learning and decision-
making process. Though an LQ control system may show some
robustness to unexpected inaccuracies in cost parameters, the
mathematical design of its control algorithm may cause the
system to make suboptimal decisions if the accuracy of its
input is compromised. If the data collected is corrupted in
storage or transmission, the players may poorly estimate the
system and cost parameters, leading to less effective control
policies which may influence game outcome overall, especially
when data is intentionally manipulated by an adversary that
injects its own objectives into the game prior to batch learning.

Manipulation of the cost data can be leveraged by one
player to increase the other player’s loss, thus increasing their
own gain. These attacks have historically been used in stealth,
diffusion, and defense tactics in the context of warfare [3],
and can also be observed in nature [4]. As digital control
systems become more prevalent for tasks spanning industrial
automation, transportation, and healthcare, cyberattacks may
threaten system integrity by disrupting data transmission or
manipulating the data collected from sensors, and pose a risk
to physical safety [5], [6]. Hence, it is important to study these
types of attacks as they are highly plausible in various contexts
and may have profound effects.

This study focuses on cost manipulation which occurs
within a linear-quadratic (LQ) zero-sum game during its batch
learning phase. Players aim to devise optimal strategies, or
feedback-control policies, based on observations of an existing
game. Simultaneously, an adversary attempts to intercept this
process and trick the players into learning malicious strategy
sets by poisoning the data available to the players. By strate-
gically manipulating the cost measurements, we show how an
adversary is able to reach this objective. Two case studies,
including the well-known pursuit-evasion game, demonstrate
the effectiveness of the attack model with attack results.

A. Related Works

When a control system learns from batch data, an adversary
is able to perform policy poisoning by manipulating any of the
available variables, including factors such as sensor readings,
actuator inputs, or cost incurred. Related works have explored
several variations of policy poisoning, including state manip-
ulation in a continuous-time system [7] and cost manipulation
in a discrete-time system [8], in a single-controller context.
These concepts can be applied to the study of linear-quadratic
differential games with multiple players [9], [10], which allows
for considering additional system impacts and complexity.
Different attack intents may also be considered in this context,
such as the case when one player aims to undermine the other
to gain an advantage. Pursuit-evasion games [11] are a widely-
studied and well-known example of the two-player game case,
which this work will leverage to demonstrate the vulnerability
of two-player zero-sum games in continuous time to policy
poisoning by means of cost manipulation. We consider this
scenario to be applicable and therefore worthy of study.

B. Organization of the Paper

This paper is organized as follows. Section II defines the
environment of the problem, introducing the LQ zero-sum dif-
ferential game and batch learning process. Section III develops
the attack model and formulates the policy poisoning scheme
as an optimization problem. Section IV consists of two case
studies, demonstrating the effectiveness of the proposed attack
model. Section V concludes the study and gives suggestions
for compelling follow-up research.

C. Notations

Let R denote the set of all real numbers, with R+, R++

further denoting those that are non-negative or positive, respec-
tively. Let Sn define the set of symmetric matrices of order n,
and further let Sn

+, Sn
++ denote those which are also positive

semi-definite or positive definite, respectively. Also, let an n-
dimensional identity matrix be denoted by In. For some matrix
M, let M ⪰ 0 and M ≻ 0 denote semi-positive and positive
definiteness, respectively. The Frobenius norm of a matrix M
is denoted by ||M||F . The superscript T denotes the transpose
of a matrix.

II. PRELIMINARIES

We first introduce the foundations of LQ zero-sum differ-
ential games and discuss the batch learning process used by
players to form their strategies.

A. LQ Zero-Sum Game Fundamentals

An LQ zero-sum differential game is described over the
following continuous-time dynamical system:

ẋ = Ax+Bu+Dd,

x(0) = x0,
(1)

with the state as x ∈ Rn, the input of player 1 as u ∈ Rm, and
the input of player 2 as d ∈Rp, and A ∈Rn×n, B ∈Rn×m, and
D ∈ Rn×p are the corresponding system matrices.

The game evolves according to the following cost function:

J(x0,u,d) =
∫

∞

0
(xT Qx+uT Ru−dT Md)dt, (2)

where Q ∈ Sn
++,R ∈ Sm

+,M ∈ Sp
+.

The instantaneous cost is hence denoted by:

c = xT Qx+uT Ru−dT Md (3)

We aim to learn the feedback control policies of the players
that map the current state to action. Specifically, the decisions
of the players are linear in the state:

u = Kux,

d = Kdx,
(4)

where Ku ∈ Rm×n and Kd ∈ Rp×n.

Assumption 1. The set of admissible control policies is
stabilizable, i.e., the set

F = {(Ku,Kd)|A+BKu +DKd is stable} (5)

is non-empty.

In a zero-sum differential game, the first player chooses
actions which minimize the game’s cost function, while the
second player seeks to maximize it. Thus, the desired control
policies satisfy:

min
u

max
d

J(x0,u,d). (6)

A Nash equilibrium (NE) exists when neither player can
benefit from changing their strategy, given their opponent’s
strategy. As the game’s NE indicates optimal play for each
player, it can also be said that the game is stabilizing. It is
reasonable to assume the players will continue the game using
this set of strategies, as any strategic change would yield a less
favorable result.

NE is a critical concept to the study of LQ zero-sum
games as it facilitates the analysis of player performance and
interaction. By studying attacks in the context of a game’s NE,
the ways in which player’s optimal strategies are manipulated
can be observed, informing future approaches to defend game
integrity. To this end, we present the definition of NE below.

Definition 1 (Feedback Nash Equilibrium). A strategy pair
(u∗,d∗) is called a feedback NE in the considered LQ zero-
sum differential game if

J(x0,u∗,d)≤ J(x0,u∗,d∗)≤ J(x0,u,d∗), (7)

which is equivalent to J(x0,u∗,d∗) = minu maxd J(x0,u,d).

The game’s optimal value function can be described by:

V ∗(x) : = min
u

max
d

∫
∞

0
(xT Qx+uT Ru−dT Md)dt

= xT Px,
(8)

where P is a symmetric matrix.

Based on (8), it is well known that the optimal strategies of
the players admit the following solutions [12, Chapter 6]:

u∗ =−R−1BT Px := Kux,

d∗ = M−1DT Px := Kdx,
(9)

where P is obtained by solving the following Generalized
Algebraic Riccati Equation (GARE):

AT P+PA−P(BR−1BT −DM−1DT)P+Q = 0. (10)

Under Assumption 1, P admits a unique symmetric solution
to (10), and the resulting NE in (9) leads to stabilized state
trajectories [13].

B. Batch Learning

Let us consider a two-player game that is sampled for train-
ing. Assuming there are N data points available, constituting
a dataset D :

D = {(xk,uk,dk,ck)...k = 1,2, ...,N}. (11)

where

xk ≜ x(k∆t), uk ≜ u(k∆t), dk ≜ d(k∆t), ck ≜ c(k∆t).

Here, ∆t ∈R+ is the chosen sampling interval. Each data point
is sampled from the system given in (1).

The goal of the players is to first estimate the system
matrices, A,B,D and Q,R,M from the batch data, then find
their optimal feedback controllers, Ku,Kd based on (9) by
solving the Riccati equation (10). If the data is incorrect, the
estimated system matrices will also be inaccurate, adversely
affecting the feedback controllers and player decision-making.

III. POLICY POISONING BY COST MANIPULATION

In this section, we introduce the batch learning and policy
learning processes used by the players and discuss the attack
model used to achieve the proposed policy poisoning.

The players use batch data to form their control policies,
Ku and Kd , assuming that the data is untouched and that
their procedures will produce desirable policies for the given
environment. An attacker has full knowledge of the players’
processes for computing Ku and Kd and plans to carry out an
attack before they import the batch data. The attacker’s goal is
to trick the players into learning the malicious policies Ku† and
Kd† that deviate from Ku and Kd , which may guide the players
in taking unintended controls as based on (4). Such an attack
can be conducted by poisoning the batch dataset by replacing
benign cost measurements with the attacker’s deceptive cost
c†.

A. Learning the Game Dynamics

To devise an optimal attack, the attacker should follow the
same procedures as the players beforehand. As the players
are only given the batch dataset, they must first perform
identification of the underlying system dynamics. Thus, as
an intermediate step, the attacker must perform the same
system identification on the original dataset. This is achieved

through a two-step process that first estimates a discrete-time
model from the samples and then determines an equivalent
continuous-time model [14], summarized as follows.

Step 1: Learn a discrete-time model from samples. The given
samples are organized into system inputs and outputs assuming
the form:

xk+1 = Fxk +Guk +Hdk, (12)

where

F = eA∆t , G =
∫

∆t

0
eAτ dτB, H =

∫
∆t

0
eAτ dτD. (13)

The system parameters F,G and H can be obtained using the
least-square estimates:

(F̂ , Ĝ, Ĥ) = argmin
F,G,H

N−1

∑
k=0

||(Fxk +Guk +Hdk)− xk+1||2. (14)

The samples are separated into vectors as follows:

X :=

xT

1
xT

2
.
.

xT
N

 , Z :=

zT

0
zT

1
.
.

zT
(N−1)

 , (15)

where X is a vector formed by concatenating the output
sequence of the sampled data, and zk = [xT

k ,u
T
k ,d

T
k]

T .
Under the assumption that ZT Z is invertible, we can directly

obtain the estimations of F,G and H using the following:

[F̂ , Ĝ, Ĥ]T = (ZT Z)−1ZX . (16)

Step 2: Transform the discrete-time model into a continuous-
time model. We currently retain the estimation of F, G, H.
Finding matrices A, B, D based on step 1 requires computing
the natural logarithm of a square matrix using the indirect
method summarized in Algorithm 1.

Algorithm 1 Computing System Matrices
1: Given initial parameters niter, ε = 0.01
2: Determine L = F − I
3: Set P0 = I,M0 = I and i = 0
4: repeat
5: Mi+1 =

−iLMi
i+1

6: Pi+1 = Pi +Mi+1
7: i = i+1
8: until i = niter or ||Pi+1 −Pi||F ≤ ε

9: Let A = PL
∆t , B = PG

∆t , D = PH
∆t

10: return A,B,D

Next, the cost matrices Q, R, and M need to be estimated
from the batch data. These can be obtained simply from
sampled data x,u,d, and c as follows:

(Q̂, R̂,M̂) = argmin
Q,R,M

N−1

∑
k=0

||(xT
k Qxk +uT

k Ruk −dT
k Mdk)− ck||2.

(17)

B. Policy Poisoning

To manipulate ck accordingly, the attacker considers the
cost matrices Q,R,M. First, the attacker estimates Â, B̂, D̂ and
Q̂, R̂,M̂ using the methods shown in (12) and (17), respec-
tively. Based on these learned parameters and the attacker’s
target policies, Ku†,Kd†, the data poisoning strategy can be
summarized by the following optimization problem:

min
c†,P,Q̃,R̃,M̃

N−1

∑
k=0

||c†
k − ck||2

s.t. ÂT P+P(Â+ B̂Ku† + D̂Kd†)+ Q̃ = 0,

R̃Ku† =−B̂T P,

M̃Kd† = D̂T P,

P ⪰ 0, Q̃ ⪰ 0, R̃ ⪰ Ip,M̃ ⪰ Im,

c†
k = xT

k Q̃xk +uT
k R̃uk −dT

k M̃dk,∀k = 1,2, ...,N.

(18)

This can be understood as the attacker finding the optimal c†
k to

replace the observed ck for each data point to reach the desired
objective without detection, addressing the trade-off between
maliciousness and stealth. The first constraint implants the
attacker’s target policies into the Riccati equation, and the
second and third describe the optimal strategies for each player.
The fourth constraint ensures that the cost parameters meet
the positive and semi-definiteness requirements to solve the
problem. The last constraint defines the projected value of the
poisoned cost elements across the batch data.

We have the following result regarding the formulated
attacker’s problem.

Proposition 1. The problem shown in (18) is convex.

Proof. It is observed that the quadratic objective function
is convex. Next, it will be demonstrated that the problem
constraints form a convex set. Suppose (P1,Q1,R1,M1) and
(P2,Q2,R2,M2) satisfy the problem’s constraints. We need to
show that for any 0 ≤ β ≤ 1, (P̃, Q̃, R̃,M̃) also satisfies the
constraints, where P̃ = βP1+(1−β)P2, Q̃ = βQ1+(1−β)Q2,
R̃ = βR1 +(1−β)R2, and M̃ = βM1 +(1−β)M2. We know
that

Q1 =−ÂT P1 −P1(Â+ B̂Ku† + D̂Kd†),

Q2 =−ÂT P2 −P2(Â+ B̂Ku† + D̂Kd†).

Multiplying both sides of the first equality by β and both sides
of the second by (1−β) yields

βQ1 +(1−β)Q2 =−ÂT [βP1+

(1−β)P2]− ([βP1 +(1−β)P2](Â+ B̂Ku† + D̂Kd†)),

which leads to

Q̃ =−ÂT P̃− P̃(Â+ B̂Ku† + D̂Kd†).

For the next constraint, we can follow the same procedure. We
know that

R1Ku† =−B̂T P1,

R2Ku† =−B̂T P2.

Multiplying both sides of the first equality by β and both
sides of the second by (1−β) yields [βR1 +(1−β)R2]Ku† =
−B̂T [βP1 +(1−β)P2], which is equivalent to

R̃Ku† =−B̂T P̃.

The proof for the remaining constraints follows similarly, and
thus the constraints of (18) form a convex set.

Directly addressing problem (18) could be computationally
prohibitive when the size of the batch dataset is large. This
motivates us to develop an alternative two-step approach to
tackle the optimization problem (18), as detailed below.

Step 1: the attacker first solves the following problem to
find P, Q̃, R̃,M̃ that will lead to Ku†, Kd†:

min
P,Q̃,R̃,M̃

||Q̃− Q̂||2F + ||R̃− R̂||2F + ||M̃− M̂||2F

s.t. ÂT P+P(Â+ B̂Ku† + D̂Kd†)+ Q̃ = 0,

R̃Ku† =−B̂T P,

M̃Kd† = D̂T P,

P ⪰ 0, Q̃ ⪰ 0, R̃ ⪰ Ip,M̃ ⪰ Im.

(19)

Note that the cost function in (19) captures the minimal
deviation of the players’ cost matrices that yields the attacker’s
desired control policy. This in turn preserves the deceptive
behavior of the attacker in compromising the cost data.

Step 2: The attacker then uses the parameters learned in step
1 to generate the poisoned dataset:

c†
k = xT

k Q̃xk +uT
k R̃uk −dT

k M̃dk, (20)

based on the same sampling interval ∆t used in generating the
original batch dataset.

Next, we use case studies to demonstrate the effects of the
proposed policy poisoning scheme on two players learning
their control policies, comparing outcomes between clean and
poisoned batch data used in the learning.

IV. CASE STUDIES

In this section, case studies show the effectiveness of the
developed policy poisoning scheme described in Section III-B.
The attack can be applied to a wide range of problems, and
we present two examples. The first case study leverages a
general model for simplicity, and the second demonstrates the
more tenable example of a pursuit-evasion game. We leverage
CVXPY [15] to solve each optimization problem.

A. Small Case

In this case study, we demonstrate the attack method with the
system dynamics initialized as follows. Let the initial state of
the system be defined as x0 = [1,1]T , the sampling interval as
∆t = 2.5e−5, and the matrices governing the system dynamics
as:

A =

[
3 −2
2 −4

]
, B =

[
1
2

]
, D =

[
1 0
2 −2

]
.

The associated cost matrices in the objective are selected as:
Q = I2, R = I1, M = 5I2. The optimal policies Ku∗,Kd∗ used

(a) Player 1 trajectory (b) Player 2 trajectory

Fig. 1. The differences of the game play of each player shown in trajectories
produced from the policies learned from the clean and poisoned dataset.

(a) Cost values (b) Attack cost

Fig. 2. (a): The cost observations in the original batch dataset and poisoned
dataset, in blue and red respectively, at each data point index. (b): The attack
cost defined as the difference between the two cost observations, in green.

to generate the batch data for the learner are found by solving
the GARE:

Ku∗ =

[
361.25
−121.69

]
, Kd∗ =

[
−72.25 24.34
−148.01 49.67

]
.

After estimating the system and cost parameters from the
untouched dataset, the players expect the following policies:

K̂u =

[
286.05
−96.40

]
, K̂d =

[
−57.54 19.39
−117.76 39.49

]
.

The adversary has the following target policies it wishes to
inject into the batch data:

Ku† =

[
16.36
−5.90

]
, Kd† =

[
−5.48 1.98
−11.76 3.90

]
.

Based on these target policies, solving the optimization prob-
lem (19) gives the attacker the following cost parameters,
which are used to generate the poisoned dataset and achieve
its ultimate objective:

Q̃ =

[
1.21 0.32
0.15 1.41

]
, R̃ = 1.65, M̃ =

[
4.9 0

0.54 4.6

]
.

When the players estimate the system and cost parameters from
the manipulated dataset, they arrive at the following policies,
which adhere to the adversary’s objective:

K̂u =

[
15.53
−5.60

]
, K̂d =

[
−4.62 1.69
−11.74 3.89

]
.

The trajectories of the two players when using the original
and poisoned dataset are shown in Fig. 1, which can be
understood as estimates of K∗ in blue vs. K† in red. It is

observed that the attacker successfully tricks the players into
following less cost-effective trajectories, with the trajectories
of Player 1 and Player 2 affected to a similar degree. Fig.
2 illustrates the magnitude of the changes to the dataset
performed by the attacker, demonstrating that the attack is
effectively carried out with minimal changes.

B. Pursuit-Evasion Game

In this case study, we examine the attack model occurring
within a pursuit-evasion game.

A pursuit-evasion LQ differential zero-sum game is a prob-
lem classified by the countering strategies of targeting and
avoidance [16]. The cost is the distance between the two
subjects over time. In this case, it is more likely that the
malicious policy will favor one player over the other due to
the asymmetry of player objectives.

Let yp ∈ R2 define the position of the pursuer and zp =
ẏp ∈ R2 its velocity. Let xp = [yT

p ,z
T
p]

T define the state vector
of the pursuer with dynamics controlled by its input up ∈ R2,
representing the acceleration force. The state dynamics of the
pursuer are:

ẋp = Axp +Bpup,

where
A =

[
0 1
0 0

]
⊗ I2, Bp =

[
0
1

]
⊗ I2.

Similarly, ye ∈ R2 and ze = ẏe ∈ R2 represent the position
and velocity vectors of the evader, and xe = [yT

e ,z
T
e]

T define
the state vector, and the control is defined by ue ∈ R2. The
state dynamics of the evader can be understood as:

ẋe = Axe +Beue,

with
Be =

[
0
1

]
⊗ I2.

Defining a new state x := xp − xe, the dynamics of the
pursuit-evasion game can be understood as:

ẋ = Ax+Bpup −Beue.

Denote by x := (x1,x2,x3,x4), we obtain the following
representation:

ẋ1
ẋ2
ẋ3
ẋ4

=

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

x1
x2
x3
x4

+

0 0
0 0
1 0
0 1

up −

0 0
0 0
1 0
0 1

ue.

the sampling interval is defined as ∆t = 0.0001, the cost

matrices as: Q =

[
1 0
0 0

]
⊗ I2,R = I2,M = 2I2 and the initial

positions and velocities of the pursuer and evader as xp(0) =
[−5,−2,5,1]T , xe(0) = [5,10,1,1]T .

The attack is performed similarly to the case study in Sec.
IV-A. The differences in the game state between the policy
pairs obtained for the clean and poisoned datasets as well as
the differences in the resulting inputs of the pursuer and evader

(a) Euclidean distance between pursuer
and evader

(b) Pursuer’s adjustments (c) Evader’s adjustments

Fig. 3. (a): The differences in the game state resulting from the policy pairs
obtained from the clean and poisoned datasets, in blue and red respectively.
(b), (c): The differences in resulting inputs between the clean and poisoned
datasets for the pursuer and evader, respectively.

(a) Cost values (b) Attack cost

Fig. 4. (a): Cost observations in the original batch dataset and poisoned
dataset, in blue and red respectively, at each data point index. (b): The attack
cost defined as the difference between the two cost observations, in green.

are displayed in Fig. 3. In Fig. 3(a), the evader is getting away
from the pursuer. We expect the pursuer to catch up to the
evader’s velocity and start shrinking the distance starting at
around t = 1. It is seen that the data poisoning attack causes
the distance between the pursuer and the evader not to shrink
until t = 1.5, a delay of 0.5. Thus, this attack favors the evader.
In Fig. 3(b) and Fig. 3(c), both the pursuer and the evaders are
shown to use weaker input signals in the poisoned case, so the
attack does not favor either player in terms of control inputs.

The attacker’s changes to the batch dataset can be observed
in Figure 4. Fig. 4(a) shows the cost values in the true batch
data in blue and the poisoned data in red, with minimal
differences between them. Further, Fig. 4(b) shows the attack
cost, defined as the difference between the two datasets at
each point, quantifying the effectiveness of the attack with the
amplified deceptive behavior displayed in Fig. 4(a).

V. CONCLUSION

In this study, we crafted a strategic attack model to interfere
in two-player LQ zero-sum differential games that learn their
feedback control policies from a batch dataset. Using the
proposed model, an adversary is able to guide the players to
its own target policies in manipulating the cost measures of
the dataset, and accomplish this minimally to avoid detection.
Future studies may explore the manipulation of other measure-
ments in the batch data and extend the model to an N-player
game. It is also essential to investigate means to detect minimal
changes in data and defend from attacks in these contexts, such
as cryptographic techniques to ensure data integrity.

REFERENCES

[1] Y. Kim and H. Bang, “Introduction to Kalman filter and its applications,”
Introduction and Implementations of the Kalman Filter, vol. 1, pp. 1–16,
2018.

[2] M. Palan, S. Barratt, A. McCauley, D. Sadigh, V. Sindhwani, and
S. Boyd, “Fitting a linear control policy to demonstrations with a Kalman
constraint,” in Learning for Dynamics and Control. PMLR, 2020, pp.
374–383.

[3] R. Isaacs, Differential Games: A Mathematical Theory with Applications
to Warfare and Pursuit, Control and Optimization. Courier Corporation,
1999.

[4] J. H. Fullard, J. A. Simmons, and P. A. Saillant, “Jamming bat echolo-
cation: the dogbane tiger moth cycnia tenera times its clicks to the
terminal attack calls of the big brown bat eptesicus fuscus.” The Journal
of experimental biology, vol. 194, no. 1, pp. 285–298, 1994.

[5] Y. Huang and Q. Zhu, “Deceptive reinforcement learning under adver-
sarial manipulations on cost signals,” in Decision and Game Theory for
Security. Springer, 2019, pp. 217–237.

[6] J. Chen and Q. Zhu, “Control of multilayer mobile autonomous systems
in adversarial environments: A games-in-games approach,” IEEE Trans-
actions on Control of Network Systems, vol. 7, no. 3, pp. 1056–1068,
2020.

[7] C. M. King, S. T. Do, and J. Chen, “Policy poisoning in batch learning for
linear quadratic control systems via state manipulation,” in 57th Annual
Conference on Information Sciences and Systems (CISS), 2023, pp. 1–6.

[8] Y. Ma, X. Zhang, W. Sun, and J. Zhu, “Policy poisoning in batch
reinforcement learning and control,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

[9] P. Zhang, “Some results on two-person zero-sum linear quadratic dif-
ferential games,” SIAM Journal on Control and Optimization, vol. 43,
no. 6, pp. 2157–2165, 2005.

[10] Y. Huang, J. Chen, and Q. Zhu, “Defending an asset with partial
information and selected observations: A differential game framework,”
in 2021 60th IEEE Conference on Decision and Control (CDC). IEEE,
2021, pp. 2366–2373.

[11] Y. Huang and Q. Zhu, “A pursuit-evasion differential game with strategic
information acquisition,” arXiv preprint arXiv:2102.05469, 2021.

[12] T. Başar and G. J. Olsder, Dynamic Noncooperative Game Theory.
SIAM, 1998.

[13] J. Engwerda, LQ Dynamic Optimization and Differential Games. John
Wiley & Sons, 2005.

[14] N. K. Sinha, “Identification of continuous-time systems from samples of
input-output data: An introduction,” Sadhana, vol. 25, no. 2, pp. 75–83,
2000.

[15] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling lan-
guage for convex optimization,” Journal of Machine Learning Research,
vol. 17, no. 83, pp. 1–5, 2016.

[16] B. Al Faiya, “Learning in pursuit-evasion differential games using
reinforcement fuzzy learning,” Ph.D. dissertation, Carleton University,
2012.

