

MNIST Handwritten Digits Classification

Using Deep Neural Networks
Son Tung Do

Department of Computer and Information Science
Fordham University

New York, NY
sdo3@fordham.edu

Abstract— The field of computer vision attempts to teach
computer models to behave like the human visual system and gain
a high-level understanding of visual inputs such as images and
videos. One application of computer vision is handwriting
recognition, where a computer attempts to read and interpret
images of human handwritten text. This project aims to make a
handwriting recognition model that can classify handwritten
numbers 0-9. The dataset is taken from the MNSIT database of
handwritten digits, and the model will be built using TensorFlow
on Google Colab. Results show convolutional neural nets
outperforming multi-layer neural nets, with the most complex
model achieving 99.54% test accuracy by training only on raw
data.

Keywords—mnist, machine learning, deep learning, neural
network.

I. INTRODUCTION
For thousands of years, humans have invented and

used handwriting as a way to transmit and store
information. Now, decades after the invention of the
computer, we have multiple devices to quickly
transmit and store data, but handwriting still remains
a familiar way to deliver a message. What separates
handwriting from typed characters on a computer is
the unique individual elements the handwritten
characters have. People all write in their own styles,
while characters on a computer are just standardized
strings of bits. This difference makes characters on a
computer easily processed by a computer itself, as it
can quickly read through the bit values to find the
value of a character.

However, handwritten characters are hard to read
for a computer. Handwritten characters only come in
the form of images instead of a few standardized
bytes, and those images come in all shapes and forms.
There is no algorithm that can reliably classify
handwritings due to how much people's handwritings
vary from each other. Instead of writing algorithms to

classify handwritings, we can build a machine
learning model and train it to do this classification
task.

This project will attempt to build a neural network
model that can classify handwritten digits. These are
Arabic numerals consisting of 10 digits 0, 1, 2, 3, 4,
5, 6, 7, 8, 9. A model that can classify these digits can
be applied in many places around the world, as they
are used in a wide variety of languages and regions
with different alphabets.

II. EXPERIMENT METHODOLOGY

A. Data Set
MNIST data set is a modified version of a

handwritings database of the National Institute of
Standards and Technology (NIST). It contains 60,000
examples in the training set and 10,000 examples in
the test set. The MNIST dataset takes these samples
from 2 different NIST datasets. One contains more
readable handwriting of Census Bureau employees,
while the other contains less readable samples from
high school students.

Figure 1. Samples digits, one more readable and one less readable

The images have been normalized and fit into the
center of a 28x28 grid. As introduced in Yann
LeCun's website [1], MNIST is a simple dataset of

real-world data that does not require too much
preprocessing and formatting. In this project, the data
does not get processed significantly. In some parts of
the program, these images got added dimensions to
fit in with the input requirement of the model.
B. Algorithms

This project uses Deep Neural Networks and
Convolutional Neural Networks to classify
handwritten digits. These networks are trained using
backpropagation with the optimizer algorithm Adam.
Adam is an optimization algorithm that can adapt and
scale the learning rates of the network [2]. The loss
function used for training is cross-entropy.

All neural networks built in this project are feed-
forward. All their neurons use the activation function
ReLU (Rectified Linear Unit), with ReLU being
defined as f(x) = max (0, x). Deep neural networks
will use densely connected layers, with each neuron
of a layer being fully connected to every neuron of
the previous and next layers. Convolutional networks
will also utilize convolutional layers, which are filters
that can learn to detect features of an image such as
edges or circles. These features are contained in
multiple feature maps, one for each filter.

As convolutional layers create multiple feature
maps, they drastically increase the number of units in
the network. To simplify the model and decrease
training time, we downsample the feature maps using
max-pooling layers. Using max-pooling layers of size
2x2 can decrease the number of pixels in feature maps
by 4 times.

Additionally, densely connected layers can apply
dropout to reduce overfitting. Dropout is a technique
that can prevent overfitting in a neural network by

randomly dropping neurons along with their
connections during training. According to Srivastava
et al., this method prevents the neurons from co-
adapting too much [3].
C. Setup Methodology

This project runs on Jupyter Notebook in Google
Colab. The main library used to create neural
networks are TensorFlow and Keras. An advantage
of running TensorFlow and Keras on Google Colab
is to utilize Google machines instead of local
machines to train models. The platform also gives
access to GPU for faster model training than CPU.

 We train each network 5 epochs at a time on the
training set and evaluate its performance on the test
set. Networks are trained with mini batches of size
128. Some network architectures are trained both
with and without dropout to compare results.
D. Network Architecture

Neural network architectures gradually increase in
size and complexity through the project. The output
layer is fixed to always have 10 units, corresponding
to 10 different classifications of digits. The project
starts with simple 2-layer neural networks with the
hidden layer having 16, 64, and 128 units,
respectively. After that, we try with 3-layer
architectures 16-16-10, 64-16-10, 64-64-10, and a
larger network of 1000-500-10 units. This network is
then extended with one more layer to become 1500-
1000-500-10.

Convolutional neural network models also start
from simple and gradually expand. We first try with
1 convolutional layer of 32 filters, followed by a max-
pooling layer of size 2x2 and some fully connected
layers. The fully connected layers are 32-10, 100-50-

Figure 2. Architecture of the best performing network

10, and 150-100-50-10. The convolutional layers are
now expanded to contain 2 layers of 32 filters, each
followed by a pooling layer, with 100-50-10 fully
connected layers at the end.

We also test out a replica of Yann LeCun's LeNet
5 [4], using the same architecture (6-P-16-P-120-84-
10) but different and more modern activation
functions and optimization algorithms. Finally, we
expand previous networks to make the final model,
32-32-P-64-64-P-256-128-64-10 (Figure 2). This
network contains over 900,000 trainable parameters
and takes 10 GPU seconds to train one epoch.

III. RESULTS
Networks are evaluated by their accuracy or,

equivalently, error rates. Results for each network in
this section are recorded by their best performance on
the test set, so the numbers of epochs trained for each
network will vary.
Table 1. Performance of 2-layer neural networks

Network Architecture Test Error
Rate (%)

2-layer NN, 16 hidden units 5.01
2-layer NN, 16 HU (with dropout) 5.77
2-layer NN, 64 HU 2.39
2-layer NN, 64 HU (with dropout) 2.57
2-layer NN, 128 HU 2.18
2-layer NN, 128 HU (with dropout) 2.14

Results for 2-layer neural networks (Table 1)

show minimal improvements by the dropout layers.
Small networks do not show to be affected by dropout
too much, and dropout layers might even hinder their
training process. 3-layer neural networks will not use
dropout layers (Table 2).
Table 2. Performance of 3-layer neural networks

Network Architecture Test Error Rate
(%)

3-layer NN, 16+16 hidden units 4.92
3-layer NN, 64+16 HU 2.61
3-layer NN, 64+64 HU 2.65

3-layer NN, 1000+500 HU 1.78

Larger neural networks start to show signs of

overfitting only after 10-15 epochs of training. The 3-
layer 1000+500 hidden unit network reaches 98.22%
accuracy after 10 training epochs but drops to 97.93%
accuracy after 15 training epochs. 4-layer neural
networks utilize dropout layers at different rates to
prevent overfitting. Results (Table 3) show the best
performing architecture of a vanilla neural network:
a 4-layer network with 1500+1000+500 hidden units
and a dropout rate of 15%. This network is the only
one up to this point that breaks the 98.50% accuracy
barrier.
Table 3. Performance of 4-layer neural networks

Network
Architecture

Dropout
rate

Test Error Rate
(%)

4-layer NN,
1500+1000+500

hidden units

0 1.71
0.15 1.47
0.2 1.57
0.25 1.90
0.5 1.89

To achieve better results, convolutional layers will

be used to help the network recognize features of the
input images. These networks utilize dropout layers
to limit overfitting.
Table 4. Performance of convolutional neural nets with 1
convolutional layer

Network Architecture Test Error
Rate (%)

Conv net, 32-P-32-10 1.39
Conv net, 32-P-32-10 (with dropout) 1.46
Conv net, 32-P-100-50-10 1.04
Conv net, 32-P-100-50-10 (with
dropout)

1.03

Conv net, 32-P-150-100-50-10 1.40
Conv net, 32-P-150-100-50-10 (with
dropout)

1.28

Convolutional networks perform significantly
better while using fewer units (Table 4). Even the
smallest one with 1 convolutional layer, 1 pooling
layer, and 1 hidden layer of 32 units achieves higher
accuracy than the best performing 4-layer neural
networks with 3000 hidden units. However, these
networks still fall short of the 99% accuracy barrier,
with the 32-P-100-50-10 model approaching really
close at 98.96% without dropout and 98.97% with
dropout.
Table 5. Performance of convolutional neural nets with 2
convolutional layers

Network Architecture Test Error
Rate (%)

Conv net, 32-P-32-P-100-50-10 0.77
Conv net, 32-P-32-P-100-50-10
(with dropout)

0.71

Conv net, 32-P-32-P-1000-500-10 0.92
Conv net, 32-P-32-P-1000-500-10
(with dropout)

0.95

LeNet 5, 6-P-16-P-120-84-10 1.10
LeNet 5, 6-P-16-P-120-84-10
(with dropout)

0.98

With another convolutional layer, these networks

manage to break the 99% barrier, with the best
performing model being the 32-P-32-P-100-50-10
using dropout (Table 5). A modified version of Yann
LeCun's LeNet 5 is trained to reach 1.10% error rate
without dropout and 0.98% error rate with dropout
applied. This result is similar to what LeCun achieved
with the original LeNet 5 in 1998 (0.95% error rate)
[4].
Table 6. Performance of deep convolutional neural nets

Network Architecture Test Error
Rate (%)

Conv net, 32-32-P-64-64-P-256-
128-64-10

0.68

Conv net, 32-32-P-64-64-P-256-
128-64-10 (with dropout)

0.46

Finally, we build a network using double
convolutional layers before each pooling layer, and
the fully connected layers contain 3 hidden layers of
256+128+64 units. This network manages to break
the 99.5% accuracy barrier when trained with
dropout. It reaches 99.32% accuracy without dropout
and 99.54% accuracy with dropout.

IV. RELATED WORK
The MNIST dataset is put together by Yann

LeCun, Corinna Cortes, and Christopher Burges [1].
This dataset is a famous benchmark for testing
machine learning algorithms in image recognition.
The dataset's website also presents state-of-the-art
results for different techniques. Many of these results
were presented in 1998 article "Gradient-based
learning applied to document recognition" by LeCun,
Bottou, Bengio, and Haffner [4].

The paper "Dropout: A Simple Way to Prevent
Neural Networks from Overfitting" by Srivastava,
Hinton, Krizhevsky, Sutskever, and Salakhutdinov
provide one way to regularize and improve the
network's performance. Their technique is successful
at preventing overfitting in neural networks,
especially in large and deep networks that are prone
to overfitting.

Michael Nielsen's book Neural Networks and
Deep Learning helps provide the fundamentals of
neural networks to begin this project [5]. Along with
theoretical knowledge, the book also explores this
MNIST dataset and some strategies to improve
network performance.

V. CONCLUSION
Overall, convolutional neural networks

significantly outperform vanilla neural networks in
image recognition tasks. Our results show that the
simplest convolutional neural network (Table 4) can
outperform a much larger multi-layer vanilla neural
network (Table 3).

This project manages to build a high-performance
convolutional network (Figure 2) that approaches the
state-of-the-art performance on this dataset. With a
test error rate of only 0.46%, it outperforms every
classifier listed on the MNIST website that does not
utilize any method of data augmentation or expansion
[1].

The network architecture in Figure 2 has achieved
a very high accuracy of 99.54% by training only on

the raw dataset of 50,000 images from the MNIST
training set. This limits the model to fewer and less
diverse training data than many models listed on the
MNIST website. This limitation could open up
opportunities to improve for future work by applying
data processing techniques like validation set and
data augmentation techniques like elastic distortion.
It can also improve using an ensemble of multiple
models.

REFERENCES

[1] Y. LeCun, C. Cortes, C. Burges, "MNIST handwritten digit database."
http://yann.lecun.com/exdb/mnist/ (accessed Dec. 01, 2021).

[2] V. Bushaev, "Adam — latest trends in deep learning optimization.,"
Medium, Oct. 24, 2018. https://towardsdatascience.com/adam-latest-
trends-in-deep-learning-optimization-6be9a291375c (accessed Dec. 05,
2021).

[3] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, "Dropout: A Simple Way to Prevent Neural Networks
from Overfitting,"

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning
applied to document recognition." Proceedings of the IEEE, 86(11):2278-
2324, November 1998.

[5] M. A. Nielsen, Neural Networks and Deep Learning. Determination
Press, 2015. Accessed: Dec. 06, 2021. [Online]. Available:
http://neuralnetworksanddeeplearning.com

