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Abstract— The field of computer vision attempts to teach 
computer models to behave like the human visual system and gain 
a high-level understanding of visual inputs such as images and 
videos. One application of computer vision is handwriting 
recognition, where a computer attempts to read and interpret 
images of human handwritten text. This project aims to make a 
handwriting recognition model that can classify handwritten 
numbers 0-9. The dataset is taken from the MNSIT database of 
handwritten digits, and the model will be built using TensorFlow 
on Google Colab. Results show convolutional neural nets 
outperforming multi-layer neural nets, with the most complex 
model achieving 99.54% test accuracy by training only on raw 
data. 
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I. INTRODUCTION 
For thousands of years, humans have invented and 

used handwriting as a way to transmit and store 
information. Now, decades after the invention of the 
computer, we have multiple devices to quickly 
transmit and store data, but handwriting still remains 
a familiar way to deliver a message. What separates 
handwriting from typed characters on a computer is 
the unique individual elements the handwritten 
characters have. People all write in their own styles, 
while characters on a computer are just standardized 
strings of bits. This difference makes characters on a 
computer easily processed by a computer itself, as it 
can quickly read through the bit values to find the 
value of a character.  

However, handwritten characters are hard to read 
for a computer. Handwritten characters only come in 
the form of images instead of a few standardized 
bytes, and those images come in all shapes and forms. 
There is no algorithm that can reliably classify 
handwritings due to how much people's handwritings 
vary from each other. Instead of writing algorithms to 

classify handwritings, we can build a machine 
learning model and train it to do this classification 
task. 

This project will attempt to build a neural network 
model that can classify handwritten digits. These are 
Arabic numerals consisting of 10 digits 0, 1, 2, 3, 4, 
5, 6, 7, 8, 9. A model that can classify these digits can 
be applied in many places around the world, as they 
are used in a wide variety of languages and regions 
with different alphabets.  

II. EXPERIMENT METHODOLOGY 

A. Data Set 
MNIST data set is a modified version of a 

handwritings database of the National Institute of 
Standards and Technology (NIST). It contains 60,000 
examples in the training set and 10,000 examples in 
the test set. The MNIST dataset takes these samples 
from 2 different NIST datasets. One contains more 
readable handwriting of Census Bureau employees, 
while the other contains less readable samples from 
high school students. 

 
Figure 1. Samples digits, one more readable and one less readable 

The images have been normalized and fit into the 
center of a 28x28 grid. As introduced in Yann 
LeCun's website [1], MNIST is a simple dataset of 



real-world data that does not require too much 
preprocessing and formatting. In this project, the data 
does not get processed significantly. In some parts of 
the program, these images got added dimensions to 
fit in with the input requirement of the model. 
B. Algorithms 

This project uses Deep Neural Networks and 
Convolutional Neural Networks to classify 
handwritten digits. These networks are trained using 
backpropagation with the optimizer algorithm Adam. 
Adam is an optimization algorithm that can adapt and 
scale the learning rates of the network [2]. The loss 
function used for training is cross-entropy. 

All neural networks built in this project are feed-
forward. All their neurons use the activation function 
ReLU (Rectified Linear Unit), with ReLU being 
defined as f(x) = max (0, x). Deep neural networks 
will use densely connected layers, with each neuron 
of a layer being fully connected to every neuron of 
the previous and next layers. Convolutional networks 
will also utilize convolutional layers, which are filters 
that can learn to detect features of an image such as 
edges or circles. These features are contained in 
multiple feature maps, one for each filter. 

As convolutional layers create multiple feature 
maps, they drastically increase the number of units in 
the network. To simplify the model and decrease 
training time, we downsample the feature maps using 
max-pooling layers. Using max-pooling layers of size 
2x2 can decrease the number of pixels in feature maps 
by 4 times. 

Additionally, densely connected layers can apply 
dropout to reduce overfitting. Dropout is a technique 
that can prevent overfitting in a neural network by 

randomly dropping neurons along with their 
connections during training. According to Srivastava 
et al., this method prevents the neurons from co-
adapting too much [3].  
C. Setup Methodology 

This project runs on Jupyter Notebook in Google 
Colab. The main library used to create neural 
networks are TensorFlow and Keras. An advantage 
of running TensorFlow and Keras on Google Colab 
is to utilize Google machines instead of local 
machines to train models. The platform also gives 
access to GPU for faster model training than CPU.  

 We train each network 5 epochs at a time on the 
training set and evaluate its performance on the test 
set. Networks are trained with mini batches of size 
128. Some network architectures are trained both 
with and without dropout to compare results. 
D. Network Architecture 

Neural network architectures gradually increase in 
size and complexity through the project. The output 
layer is fixed to always have 10 units, corresponding 
to 10 different classifications of digits. The project 
starts with simple 2-layer neural networks with the 
hidden layer having 16, 64, and 128 units, 
respectively. After that, we try with 3-layer 
architectures 16-16-10, 64-16-10, 64-64-10, and a 
larger network of 1000-500-10 units. This network is 
then extended with one more layer to become 1500-
1000-500-10. 

Convolutional neural network models also start 
from simple and gradually expand. We first try with 
1 convolutional layer of 32 filters, followed by a max-
pooling layer of size 2x2 and some fully connected 
layers. The fully connected layers are 32-10, 100-50-

Figure 2. Architecture of the best performing network 



10, and 150-100-50-10. The convolutional layers are 
now expanded to contain 2 layers of 32 filters, each 
followed by a pooling layer, with 100-50-10 fully 
connected layers at the end.  

We also test out a replica of Yann LeCun's LeNet 
5 [4], using the same architecture (6-P-16-P-120-84-
10) but different and more modern activation 
functions and optimization algorithms. Finally, we 
expand previous networks to make the final model, 
32-32-P-64-64-P-256-128-64-10 (Figure 2). This 
network contains over 900,000 trainable parameters 
and takes 10 GPU seconds to train one epoch. 

III. RESULTS  
Networks are evaluated by their accuracy or, 

equivalently, error rates. Results for each network in 
this section are recorded by their best performance on 
the test set, so the numbers of epochs trained for each 
network will vary. 
Table 1. Performance of 2-layer neural networks 

Network Architecture Test Error 
Rate (%) 

2-layer NN, 16 hidden units 5.01 
2-layer NN, 16 HU (with dropout) 5.77 
2-layer NN, 64 HU 2.39 
2-layer NN, 64 HU (with dropout) 2.57 
2-layer NN, 128 HU 2.18 
2-layer NN, 128 HU (with dropout) 2.14 

 
Results for 2-layer neural networks (Table 1) 

show minimal improvements by the dropout layers. 
Small networks do not show to be affected by dropout 
too much, and dropout layers might even hinder their 
training process. 3-layer neural networks will not use 
dropout layers (Table 2).  
Table 2. Performance of 3-layer neural networks 

Network Architecture Test Error Rate 
(%) 

3-layer NN, 16+16 hidden units 4.92 
3-layer NN, 64+16 HU 2.61 
3-layer NN, 64+64 HU 2.65 

3-layer NN, 1000+500 HU 1.78 
 
Larger neural networks start to show signs of 

overfitting only after 10-15 epochs of training. The 3-
layer 1000+500 hidden unit network reaches 98.22% 
accuracy after 10 training epochs but drops to 97.93% 
accuracy after 15 training epochs. 4-layer neural 
networks utilize dropout layers at different rates to 
prevent overfitting. Results (Table 3) show the best 
performing architecture of a vanilla neural network: 
a 4-layer network with 1500+1000+500 hidden units 
and a dropout rate of 15%. This network is the only 
one up to this point that breaks the 98.50% accuracy 
barrier. 
Table 3. Performance of 4-layer neural networks 

Network 
Architecture 

Dropout 
rate 

Test Error Rate 
(%) 

4-layer NN, 
1500+1000+500 

hidden units 

0 1.71 
0.15 1.47 
0.2 1.57 
0.25 1.90 
0.5 1.89 

 
To achieve better results, convolutional layers will 

be used to help the network recognize features of the 
input images. These networks utilize dropout layers 
to limit overfitting. 
Table 4. Performance of convolutional neural nets with 1 
convolutional layer 

Network Architecture Test Error 
Rate (%) 

Conv net, 32-P-32-10 1.39 
Conv net, 32-P-32-10 (with dropout) 1.46 
Conv net, 32-P-100-50-10 1.04 
Conv net, 32-P-100-50-10 (with 
dropout) 

1.03 

Conv net, 32-P-150-100-50-10 1.40 
Conv net, 32-P-150-100-50-10 (with 
dropout) 

1.28 

 



Convolutional networks perform significantly 
better while using fewer units (Table 4). Even the 
smallest one with 1 convolutional layer, 1 pooling 
layer, and 1 hidden layer of 32 units achieves higher 
accuracy than the best performing 4-layer neural 
networks with 3000 hidden units. However, these 
networks still fall short of the 99% accuracy barrier, 
with the 32-P-100-50-10 model approaching really 
close at 98.96% without dropout and 98.97% with 
dropout. 
Table 5. Performance of convolutional neural nets with 2 
convolutional layers 

Network Architecture Test Error 
Rate (%) 

Conv net, 32-P-32-P-100-50-10 0.77 
Conv net, 32-P-32-P-100-50-10 
(with dropout) 

0.71 

Conv net, 32-P-32-P-1000-500-10 0.92 
Conv net, 32-P-32-P-1000-500-10 
(with dropout) 

0.95 

LeNet 5, 6-P-16-P-120-84-10 1.10 
LeNet 5, 6-P-16-P-120-84-10    
(with dropout) 

0.98 

 
With another convolutional layer, these networks 

manage to break the 99% barrier, with the best 
performing model being the 32-P-32-P-100-50-10 
using dropout (Table 5). A modified version of Yann 
LeCun's LeNet 5 is trained to reach 1.10% error rate 
without dropout and 0.98% error rate with dropout 
applied. This result is similar to what LeCun achieved 
with the original LeNet 5 in 1998 (0.95% error rate) 
[4].  
Table 6. Performance of deep convolutional neural nets  

Network Architecture Test Error 
Rate (%) 

Conv net, 32-32-P-64-64-P-256-
128-64-10 

0.68 

Conv net, 32-32-P-64-64-P-256-
128-64-10 (with dropout) 

0.46 

 

Finally, we build a network using double 
convolutional layers before each pooling layer, and 
the fully connected layers contain 3 hidden layers of 
256+128+64 units. This network manages to break 
the 99.5% accuracy barrier when trained with 
dropout. It reaches 99.32% accuracy without dropout 
and 99.54% accuracy with dropout. 

IV. RELATED WORK 
The MNIST dataset is put together by Yann 

LeCun, Corinna Cortes, and Christopher Burges [1]. 
This dataset is a famous benchmark for testing 
machine learning algorithms in image recognition. 
The dataset's website also presents state-of-the-art 
results for different techniques. Many of these results 
were presented in 1998 article "Gradient-based 
learning applied to document recognition" by LeCun, 
Bottou, Bengio, and Haffner [4]. 

The paper "Dropout: A Simple Way to Prevent 
Neural Networks from Overfitting" by Srivastava, 
Hinton, Krizhevsky, Sutskever, and Salakhutdinov 
provide one way to regularize and improve the 
network's performance. Their technique is successful 
at preventing overfitting in neural networks, 
especially in large and deep networks that are prone 
to overfitting. 

Michael Nielsen's book Neural Networks and 
Deep Learning helps provide the fundamentals of 
neural networks to begin this project [5]. Along with 
theoretical knowledge, the book also explores this 
MNIST dataset and some strategies to improve 
network performance. 

V. CONCLUSION 
Overall, convolutional neural networks 

significantly outperform vanilla neural networks in 
image recognition tasks. Our results show that the 
simplest convolutional neural network (Table 4) can 
outperform a much larger multi-layer vanilla neural 
network (Table 3).  

This project manages to build a high-performance 
convolutional network (Figure 2) that approaches the 
state-of-the-art performance on this dataset. With a 
test error rate of only 0.46%, it outperforms every 
classifier listed on the MNIST website that does not 
utilize any method of data augmentation or expansion 
[1].  

The network architecture in Figure 2 has achieved 
a very high accuracy of 99.54% by training only on 



the raw dataset of 50,000 images from the MNIST 
training set. This limits the model to fewer and less 
diverse training data than many models listed on the 
MNIST website. This limitation could open up 
opportunities to improve for future work by applying 
data processing techniques like validation set and 
data augmentation techniques like elastic distortion. 
It can also improve using an ensemble of multiple 
models.  
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