
Crime Detection in Security Camera Footage

Jee Hun Kang
Graduate School of Arts and Sciences

Fordham University
New York, United States

jkang78@fordham.edu

John Grossi
Graduate School of Arts and Sciences

Fordham University
New York, United States

jgrossi2@fordham.edu

Son Tung Do
Fordham College at Lincoln Center

Fordham University
New York, United States

sdo3@fordham.edu

Abstract—Cameras can capture thousands of hours of footage,
making manual review an arduous task. By creating a model
that can detect if a crime is taking place in a still image, we can
assist in reducing this review process. In this research project, we
investigated how to apply state-of-the art computer vision models
to identify anomalous images among 14 different classes.

Index Terms—Deep Learning, Computer Vision, Anomaly Detec-
tion, Crime Detection, ResNet, DenseNet

I. INTRODUCTION

Security cameras can provide protection, guarantee account-
ability, and serve as evidence in court. However, cameras can
capture hundreds if not thousands of hours of footage that must
be manually reviewed in the event of a crime. This arduous
task allows for human error to creep into the review process.
As the vast majority of camera footage is day to day events,
footage of a crime is a rare exception and can be a needle in
a haystack to find when working without reference. We would
like to propose a model to aid in identifying when a crime
occurs in security camera footage to aid in the footage review
process. The related work has been done by Sanskar Hasija,
the grandmaster at Kaggle who tried to produce the best model
using the same dataset. Our goal is to produce the better result
using the same dataset used by Sanskar Hasija.

In this research project, we adopted computer vision tech-
niques to help in security camera footage review. Our model
will identify when a crime occurs in a static image. If a crime
is present, it will then identify which crime is taking place
from a predetermined set of 13 possible crimes. As existing
computer vision models have been trained on datasets far
larger than we can, we have chosen to utilize existing pre-
trained models and finetune them in anomaly detection and
crime classification.

This paper is organized as follows. Section II will discuss
our dataset and preprocessing steps taken. Sections III de-
scribes our results for our experiments and models chosen.
Section IV will cover the reporting of the results of our
experiments. Section V covers the conclusion of this research
and future work.

II. DATA

A. Dataset

A readily available dataset was found from UCF Crime
Dataset, a publicly available dataset on Kaggle. [1] The dataset
contains extracted images from the UCF crime dataset used for
Real-world Anomaly Detection in Surveillance Videos. The
dataset contains images extracted from every video from the
UCF Crime Dataset. Every 10th frame is extracted from each
full-length video and combined for every video in that class.
All the images have a size of 64*64 and they are in .png
format. This dataset falls under CC0: Public Domain.

The dataset contains 1,377,653 images that encompass 14
different classes. The 13 crime classifications are: abuse,
arrest, arson, assault, burglary, explosion, fighting, road acci-
dents, robbery, shooting, shoplifting, stealing, and vandalism.
There is an additional ”NormalVideos (Non-Crime)” class
which accounts for the majority of the images in both our
training and test sets as seen in Figure 1.

Fig. 1. Total Distribution of Dataset



Fig. 2. Before Preprocessing

B. Data Preprocessing

To preprocess our images, we performed traditional com-
puter vision techniques - image rescaling, width and height
shift, conversion into an encoded array, and division into
train, validation, and test sets. The challenge of preprocessing
came with scaling these traditional techniques to such a
large dataset. Opening each image individually and applying
a pre-processing function written by us simply took too
much time to be deemed acceptable. Therefore, we opted to
incorporate a readily available preprocessing function provided
by Keras. The preprocessing function used in this project
is Densenet.preprocessing, which converts images to numpy
arrays in the proper input shape that Densenet models use. We
then create an image generator using the ImageDataGenerator
package. This package allows us to generate batches of tensor
image data with real-time data augmentation. [2] ImageData-
Generator allows us to easily incorporate preprocessing tech-
niques such as horizontal and vertical flips, image re-scaling,
and validation splits. This package used in conjunction with
Densenet’s preprocessing function enables us to build an input
pipeline that streamlines our image loading, preprocessing, and
categorization. An example image is provided in Figure 2 to
illustrate an image before preprocessing. Figure 3 displays an
image after preprocessing, converted from a numpy array back
to an image.

Fig. 3. After Preprocessing

Once our preprocessing pipeline is constructed, we pass
both our training and test sets through. The pipeline finished
loading both training and test images after 1092.27s. There
are a total of 1,377,653 images in our dataset. The train-
test split is approximately 92-8: 92 percent of images belong
to the training set and 8 percent belong to the test set. The
distribution is illustrated in Figure 4.

Our training data has a total image count of 1,266,345;
class distribution is displayed in Figure 5. Our test data has

Fig. 4. Traing Test Set Distribution

a total image count of 111,308; class distribution is displayed
in Figure 6.

Fig. 5. Class Distribution of Training Set

III. METHODOLOGY

We utilize pretrained Convolutional Neural Networks
(CNN) models as feature extractors. These CNNs are trained
on the ImageNet dataset [3] and are publicly available. Python
packages Tensorflow and Keras are used to implement the ex-
periments in this project, and Kaggle environment provides the
hardware necessary for training (GPU P100). The pretrained
models used in this project are outlined in Table I.

We also try combining 3 different CNNs extractors to get
a larger feature map. The features are then fed into fully
connected layers to output predictions.



Fig. 6. Class Distribution of Test Set

DenseNet121 [4]
DenseNet201 [4]

EfficientNetB6 [5]
DenseNet121 + ResNet50 + VGG16 [4], [6], [7]

TABLE I
PRETRAINED CNNS USED

IV. RESULTS

In this section we will discuss our results and other interest-
ing findings from our experiments. The best model on Kaggle
achieves an ROC AUC score of 0.833 [8].

We chose ROC AUC as our main metric on which to base
our analysis as we are performing multi-class analysis. Figure
7 illustrates the ROC AUC curve for our combined CNN
model. We believed this model would yield the best results as
it would be combing three different CNN models. However,
results were not as impressive as anticipated, class results are
shown in Table III.

Surprisingly, DenseNet121 was the best performing model,
yielding the highest ROC AUC score of all the tested models.
Figure 8 and Table IV.

Across the board, certain classes tended to consistently
under perform. For example, even on our best model,
DenseNet121, classes such as Arrest and Fighting perform
worse than random guessing. Abuse and Vandalism perform
just as well as random guessing. We believe this is due to
the nature of the crime being looked at. For example, fighting
would involve two or more people on camera pushing, kicking,

Pretrained CNN feature extractor ROC AUC Score
DenseNet121 0.837
DenseNet201 0.831

EfficientNetB6 0.771
DenseNet121 + ResNet50 + VGG16 0.816

TABLE II
ROC AUC BY MODEL

Fig. 7. ROC Curve of 3 CNN Model

Class ROC AUC Score
Abuse 0.5
Arrest 0.46
Arson 0.76

Assault 0.7
Burglary 0.68

Explosion 0.71
Fighting 0.31
Normal 0.71

RoadAccidents 0.65
Robbery 0.67
Shooting 0.65

Shoplifting 0.51
Stealing 0.56

Vandalism 0.5
TABLE III

ROC AUC CLASS SCORE OF 3 CNN MODEL

Fig. 8. ROC Curve of Best Model

Class ROC AUC Score
Abuse 0.62
Arrest 0.44
Arson 0.84

Assault 0.78
Burglary 0.72

Explosion 0.74
Fighting 0.36
Normal 0.75

RoadAccidents 0.67
Robbery 0.59
Shooting 0.67

Shoplifting 0.6
Stealing 0.6

Vandalism 0.51
TABLE IV

ROC AUC CLASS SCORE OF BEST MODEL



shoving, etc. To our model, this may look no different than
two or more people in close proximity which could easily be
misclassified as NormalVideo.

V. CONCLUSION

In this research project we have shown interesting findings
by performing computer vision methods on image classifica-
tion and anomaly detection tasks. The DenseNet121 model
returns the best results when analyzing the ROC AUC values.
However, we could not achieve a substantial increase in
performance compared to the current best result on Kaggle.
In particular, the result obtained from combining the feature
maps of 3 CNNs did not perform as expected.

Overall, the model performs really well on some crimes
such as arson or explosion but does poorly on fighting or
arrest. Various pretrained CNNs have similar overall perfor-
mance while suffering from the same poor performance on
the fighting class. This suggests that the model’s performance
bottleneck might be its lack of temporal knowledge.

The largest avenue for future work to continue this project
would be to include temporal modules to learn from videos.
As we are only dealing with still images sampled from video,
many images do not contain any action occurring and can
easily be misclassified. Temporal modules would allow the
model to look over a sequence of images through time, and
we believe this would lead to better results. This method
also requires more computational power, as the current vision
model already takes approximately 3 hours to train.

REFERENCES

[1] S. Hasija, “Ucf crime dataset,” Kaggle, 2021.
[2] F. Chollet et al. (2015) Keras. [Online]. Available:

https://github.com/fchollet/keras
[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255.

[4] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2016. [Online]. Available:
https://arxiv.org/abs/1608.06993

[5] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling
for convolutional neural networks,” 2019. [Online]. Available:
https://arxiv.org/abs/1905.11946

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[7] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition.” [Online]. Available:
https://arxiv.org/abs/1409.1556

[8] S. Hasija, “Video anomaly detection,” 2021. [Online]. Available:
https://www.kaggle.com/code/odins0n/video-anomaly-detection


