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ABSTRACT
GRE Aptitude Test scores have been a key criterion for ad-
missions to U.S. graduate programs. However, many uni-
versities have lifted their standard test (e.g., GRE, SAT) re-
quirements due to the COVID-19 pandemic, and many are
unlikely to reinstate them after the pandemic ends. This
change poses additional challenges in evaluating prospective
students. In this paper, we examine the viability of ap-
plying machine learning models to predict applicants’ GRE
scores using the rest of their application materials. We uti-
lize a diverse set of information from the student admis-
sions application, including their undergraduate GPA, un-
dergraduate major, and resume. Our work is based on a
real-world dataset consisting of 814 MS in Computer Sci-
ence and M.S. in Data Science applications submitted with
GRE scores. We investigate two tasks that are of practical
value: 1) predicting the GRE quantitative reasoning and
verbal percentiles and 2) classifying the top 20% and bot-
tom 20% of applicants based on GRE scores. The learned
classification models for this second task can serve as a focus
of attention tool for admission committees and aid in render-
ing scholarship and rejection decisions. We further identify
and discuss the principal factors utilized by our models to
better understand the relationship between the various ap-
plication components and GRE performance. The findings
also provide additional insight into what the GRE exam is
really measuring.

Keywords
machine learning, graduate admission, GRE score predic-
tion, supervised learning, educational data mining

1. INTRODUCTION
The Graduate Record Examination (GRE) is a cognitive
abilities test administered by Educational Testing Service
(ETS). The test consists of three components that measure
applicants’ competence in verbal reasoning (GRE-V), quan-
titative reasoning (GRE-Q), and analytical writing skills

(GRE-A). Because of its objectivity, standardization, and
predictive utility, GRE scores are used by many graduate
schools as necessary criteria to admit qualified students. In-
deed, an earlier study led by Norcross et al. showed that
more than 90% of Ph.D. programs and over 80% of mas-
ter’s programs in the U.S. mandated GRE scores [16]. This
is particularly the case in the science, technology, engineer-
ing, and mathematics (STEM) field. For example, estimated
GRE scores for 2021 graduate programs across Stanford uni-
versity range between 157-170 for GRE Verbal and between
155-170 for GRE Quantitative Reasoning. However, for a
Masters in Engineering, the average Quantitative score is
167 [19].

Despite GRE’s essential role in graduate admissions, many
institutions were forced to lift the requirement due to the
COVID-19 pandemic. The main concerns are the accessi-
bility to physical test centers and potentially compromised
scores from at-home tests. As a result, admission commit-
tees have to rely on more subjective materials such as the
statement of intent (SOI) and letters of recommendation
(LORs). Effective estimation of GRE scores could provide
admission committees additional objective evaluations of the
applicants.

This study aims to predict applicants’ missing GRE scores
using the rest of their application materials. The underly-
ing assumption is that students’ academic credentials and
professional experiences are highly correlated to their per-
formance on standardized tests. For example, applicants
who have taken math courses (e.g., linear algebra or statis-
tics) are likely to perform well in the quantitative section of
the GRE test, and students’ GPAs are in general positively
correlated with their GRE scores. Table 1 presents the pre-
dictors utilized for this study. These features are extracted
from student application materials and grouped into five cat-
egories: demographics, academic credentials, TOEFL per-
formance (for international students), Math skills, and C.S.
skills. We present the engineering of these features and their
statistics in Section 3.

We built our predictive models using 800+ applications that
include GRE scores from the M.S. in Data Science (MSDS)
and M.S. in Computer Science (MSCS) programs at X1

University. In this paper, we explore machine learning ap-
proaches for two GRE prediction tasks. First, we employ
ridge regression to predict GRE-Q and GRE-V score per-
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centiles. Next, we build classification models to identify the
top 20% and bottom 20% of applicants based on their GRE-
Q or GRE-V scores. The undertaking of the latter task is
particularly valuable in reducing the workload of the ad-
mission committees given the continuous rise in graduate
applications [7]. We further examine separate models for
the international students leveraging their standard foreign
language test scores (e.g., TOEFL).

Another motivation for this research is to study the principal
factors in estimating applicant GRE scores. Given sufficient
model predictive performance, the identified top predictors
can be used for two purposes. First, they pinpoint the appli-
cation components that are most relevant to applicant GRE
abilities and, thus, can facilitate efficient and systematic ap-
plicant comparisons in the absence of GRE scores. Second,
the principal predictors can help us identify and analyze po-
tential racial and gender biases associated with GRE scores.
A prior study has found that ”the GRE is a better indicator
of sex and skin color than of ability and ultimate success”
[13]. Our study, however, suggests that gender and race are
not top predictors in our models. We list and discuss our
principal predictors in Section 5.4.

2. RELATED WORK
Investigating the validity of the GRE test and its predictive
value in student performance in higher education is an active
research area. Kuncel et al. launched extensive research ex-
amining the effectiveness of GRE in predicting performance
at both the master and doctoral levels. Across nearly 100
studies and 10,000 students, their study found that GRE
scores predict first year and overall GPAs well for both mas-
ter’s and doctoral students [10]. Young et al. investigated
the validity of the GRE scores in the admission of Master of
Business Administration (MBA) students using a sample of
480 admitted students[24]. They found that GRE-Q was the
most influential predictor, followed by GRE-V and GRE-A,
in predicting students’ first term GPAs. Furthermore, they
found that the three GRE test metrics are significantly more
predictive than undergraduate GPAs.

Despite the value of standardized testing, some studies have
found controversial evidence and, thereby, advocate the elim-
ination of the GRE test. For example, Petersen et al. pre-
sented a multi-institutional study of GRE scores as predic-
tors of STEM Ph.D. degree completion [17]. Their findings
suggest that GRE scores are not a strong predictor of gradu-
ate school success and thus should not be considered the gold
standard for admission. Likewise, Sealy et al. investigated
the association between GRE scores and academic success
among Ph.D. students’ in biomedical sciences [18]. They
concluded that the GRE scores were weak predictors of stu-
dents’ future academic success. In addition to questioning
the predictive value of the GRE scores, researchers have also
raised concerns about the test’s fairness and implicit bias,
considering the wide achievement gap in test scores between
demographic groups [9, 15, 22].

It is worth noting that all the above studies focused on eval-
uating the validity of the GRE. Our study differs in that we
investigate the possibility of predicting applicants’ GRE per-
formance using available application materials. This under-
taking is valuable in two respects. First, as discussed above,

Table 1: Predictive Features
Demographics TOEFL Scores CS Skills*

Gender Listening Python
Race Speaking Java
Age Reading C++
Permanent Country Writing Matlab
Native English Speaker SAS

Math Skills* Database
Academic Credentials Calculus Microsoft Office
Undergraduate Major Linear Algebra Machine Learning
Undergraduate GPA Statistics Software
Months Since Degree

* Each skill represents a binary feature indicating if the appli-
cant’s resume contains the keyword.

there is controversy about the value of the GRE test. Con-
sequently, some graduate programs may choose to eliminate
the GRE requirements to attract a diverse pool of students.
Estimated GRE scores based on student application materi-
als can offer additional information in making admission de-
cisions. Second, for programs that currently mandate GRE
scores, accurate predictive models can facilitate lowering the
requirement to make the GRE optional or just encouraged,
to accommodate disadvantaged prospective students from
rural and low-income backgrounds [9].

3. DATA AND PRE-PROCESSING
We based our study on 814 GRE-available applications sub-
mitted to the MS of Data Science (MSDS) and MS of Com-
puter Science (MSCS) program at X1 University. Of these,
300 are international applications. The features we collected
from the structured application template can be classified
into demographics, academic credentials, and TOEFL scores
for international students. We also automatically extracted
Math and CS skill information from applicants’ resumes.
Table 1 presents the specific features in each category. Note
that the math and CS skill features are binary indicators
for a given keyword. For example, the “C++” feature will
take value 1 if the applicant’s resume contains the “C++”
keyword and 0 otherwise.

3.1 Feature Statistics
This section summarizes the distribution of features values
for key demographic features and non-demographic features
related to the applicants. These distributions are summa-
rized in Figure 1. The Age chart shows that the vast ma-
jority (96%) of applicants are under 30, with approximately
two-thirds of these under 24 and the remaining one-third be-
tween 24 and 30. We see that only a bit more than one-third
(36%) of the applicants are female, which is consistent with
the Computer Science and Data Science fields in the United
States being male-dominated. In fact, the applicant pool has
more gender diversity than one might expect based on U.S.
Bureau of Labor Statistics for 2021 [21], which show that
only 26% of the Computer and Mathematical Occupations
in the U.S. are staffed by women.

The information in Figure 1 further shows that 84% of the
applicants do not have English as their first language, which
is mainly due to the large number of applicants who come
from China and, to a lesser degree, India. In fact 67% of
applicants have China or India listed as their permanent
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Figure 2: Applicant Count (a), Average GRE-Q (b) and GRE-V (c) Percentiles by Major

country, although we know that even more come from these
countries since many subsequently become US citizens (i.e.,
many of the 26% that list the US as their permanent coun-
try were born overseas). The racial information provided
by the applicants is not very helpful since that information
typically (82%) is not specified. The Months since Degree
information indicates the time from completion of the stu-
dent’s last degree to the time of submitting the application.
For 34% of the students this time is negative, indicating that
they are applying while still completing their undergraduate
degree, while most of the rest (55%) have completed their
last degree within roughly the last four years. In less than
10% of the cases has the student completed their last degree
more than four years ago.

We expect the applicant’s grade point average (GPA) to be
one of the key features for predicting the GRE scores, so

it is important to have a good understanding of the GPA
distribution. We expect most of the applicants to have good
grades since the university’s general policy is to admit stu-
dents only with an undergraduate GPA of 3.0 or better.
The GPA distribution of the applicants generally conforms
to this, although a substantial percentage of the applicants
do have a GPA below 3.0 (28% are below 3.0 and 5% are
below 2.5).

3.2 Applicant Prior Major Discipline
The applicant’s academic major is a particularly important
feature since it provides a great deal of information about
what prior education the student received. Figure 2(a) shows
the distribution of the applicants by (undergraduate) major
category. Because the MSCS and MSDS degrees are techni-
cal, one would expect most of the undergraduate degrees to
be from STEM fields, and many should be specifically in a



Figure 3: GRE-Q (left) and GRE-V (right) Percentile His-
tograms

Computer Science related area since most applicants to the
MSCS program should have some form of Computer Science
degree. These values in Figure 2(a) generally adhere to this,
but there are a non-trivial number of non-STEM (e.g., hu-
manities, communication, economics, business) applicants.

One might expect the applicants with non-STEM degrees
to have, on average, lower GRE quantitative scores and per-
haps higher GRE verbal scores. This is largely what is ob-
served in Figure 2(b) and Figure 2(c). Humanities majors
have the lowest GRE-Q score, followed by psychology ma-
jors, and then economics, communications, and business ma-
jors. The psychology quantitative scores may seem anoma-
lous, but psychology is not always considered a STEM dis-
cipline and sometimes is considered a social science. Con-
versely, the STEM disciplines are associated with consis-
tently high GRE-Q scores. Overall, the biggest surprise may
be the very high GRE-Q scores for Finance majors. The
patterns with the GRE-V scores tend to show that STEM
majors yield low GRE-V scores and non-STEM fields yield
higher GRE-V scores, but in many cases the fields perform
similarly. The standouts are that psychology, humanities,
and to a lesser degree economics, yield the highest GRE-V
scores. Perhaps most surprising is that the communications
majors have relatively low GRE-V scores.

3.3 Distributions of GRE Score Percentiles
The distribution of the class variable is of special impor-
tance, and for that reason, we take a close look at the dis-
tribution of the GRE quantitative and verbal distributions
by percentile. These are shown in Figure 3. Note that the
GRE-Q applicant percentile scores are heavily asymmetric
and skewed toward the 100% percentile. This outcome is
expected since applicants to the MSCS and MSDS degrees
should have very high GRE-Q scores. It is worth noting,
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Figure 4: Model Training and Evaluation Architecture

however, that while low scores are rare, they do exist (8%
of applicants are below the 50th percentile), and in fact ex-
tend all the way down to the very bottom. The distribution
of GRE-V scores is far more traditional. It is much more
symmetric and evenly distributed than the GRE-Q scores.
Note that these different distributions have implications for
the associated regression and classification tasks. Guessing
the average value will yield much better regression results
for the quantitative scores than the verbal scores, since the
quantitative scores are much more tightly concentrated. On
the other hand, the nature of the problem will make it much
harder to beat the strategy of always guessing the average
value. Similarly, identifying the top 20% of GRE-Q per-
centile scores will not be easy since so many applicants have
scores close to this border, but identifying the bottom 20%
will not have this issue and therefore may be more achiev-
able.

4. METHODOLOGY
In this section, we first illustrate our model training and
evaluation framework. We next introduce each regression
and classification model and its optimal hyperparameter val-
ues used in model training. These values were selected via
grid search [3] using a nested 10-fold cross-validation on the
training data. The unspecified hyperparameters use the de-
fault values in Python’s scikit-learn library, the software we
used to implement our models. Lastly, we describe how we
address the imbalanced training data.

4.1 Experimental Design
Figure 4 illustrates our model training framework. We eval-
uate each model’s performance using a 10-fold (outer) cross-
validation. The process involves randomly splitting the data
into ten disjoint groups (i.e., folds) of approximately equal
size. Subsequently, each model is trained ten times using the
ith (i = 1, 2, ..10) fold as the test data, and the remaining
nine folds as the training data (Ti). For each evaluation met-
ric, we report a model’s performance as the mean of the ten
out-of-sample scores on the 10 test folds, indicated by the
upper right box in Figure 4. The red box indicates the “bag-
ging” technique used to address data imbalance in training
the classification models.



We further apply a nested cross-validation to facilitate hy-
perparameter selection. To this end, we partition training
data Ti in each outer iteration i into ten folds and conduct a
grid search [3] on a set of algorithm-specific parameters. The
optimal parameter set (Pi) for Ti is chosen to produce the
highest average AUC (Area Under the ROC Curve) [5] score
on the 10 test folds. Finally, we report the performance of
the model trained using Ti and Pi.

4.2 Regression Models
Linear regression models assume a linear relationship be-
tween the observed feature vector x and the target variable
y. Formally,

y = w0 + w1x1 + w2x2 + · · ·+ wdxd = wTx

where x = (1, x1, x2, . . . , xd)
T are the observed features, y

is the real-valued target, and w = {w0, w1, . . . , wd}T are
the model parameters. Training a linear regression model
entails minimizing the mean squared error (MSE) defined
as

E(w) =
1

N

N∑
n=1

(wTxn − yn)
2 (1)

where N is the number of training samples.

We experimented with three linear regression models in pre-
dicting the GRE-Q and GRE-V percentiles. These models
applied different regularization techniques to prevent over-
fitting.

4.2.1 LASSO Regression
LASSO (Least Absolute Shrinkage and Selection Operator)
regression [20] encourages simple, sparse models by adding
the L1-norm of model complexity to the cost function de-
fined in (1). Specifically, LASSO minimizes

E(w) =
1

N

N∑
n=1

(wTxn − yn)
2 + λ ∥ w ∥1

where ∥ w ∥1=
d∑

j=1

|wj | and λ is the trade-off hyperparame-

ter controlling the regularization strength. A desirable prop-
erty of LASSO regression is shrinkage and feature selection.
In particular, regression coefficients for less predictive fea-
tures will be shrunk toward zero and variables with non-zero
regression coefficients are the principal predictors.

In our study, we applied grid search to optimize the trade-
off hyperparameter λ. Depending on the specific tasks, the
optimal λ values varied from 0.12 to 0.4.

4.2.2 Ridge Regression
Ridge regression [8] follows the sample regularization prin-
ciple as LASSO except that it applies a L2-norm penalty
instead of L1-norm. Thus, ridge regression minimizes

E(w) =
1

N

N∑
n=1

(wTxn − yn)
2 + λ ∥ w ∥2

where ∥ w ∥2=
d∑

j=1

|wj |2 and λ is the trade-off hyperparam-

eter controlling the regularization strength.

Ridge regression is desirable because the quadratic penalty
term makes the cost function strongly convex, engendering a
unique minimum and a closed-form solution. We further ex-
plored kernelized ridge regression with polynomial and RBF
kernels. The best models were achieved using the RBF ker-
nel with gamma = 0.01 and polynomial kernels with degrees
ranging from 2 to 7.

4.2.3 Elastic Net
Elastic Net combines LASSO and ridge regression to exploit
the advantages of both approaches. In addition, the elastic
net encourages a grouping effect, where strongly correlated
predictors tend to be in or out of the model together. The
cost function of elastic net is defined as

E(w) =
1

N

N∑
n=1

(wTxn−yn)
2+λ(

(1− α)

2
∥ w ∥2 +α ∥ w ∥1

where α controls the trade-off between L1 and L2 regular-
ization, and α = 1 is equivalent to LASSO, and α = 0 is
equivalent to Ridge. Through grid search, we found that
the optimal λ ranged from 0.06 to 0.38 for our models, and
α ranged from 0.7 to 1.

4.3 Classification Models
We experimented with five classification models to identify
the top 20% and bottom 20% of applicants based on their
GRE-Q and GRE-V percentiles.

4.3.1 Decision Tree
A decision tree (DT) [14] employs a tree structure to model
a decision-making process, in which each internal node per-
forms a test on an attribute, each branch represents an out-
come of the test, and each leaf node holds a decision (e.g.,
class label). An essential task in building a DT model is to
select the optimal attribute for each internal node. Infor-
mation Gain and Gini impurity are the two popular met-
rics used to maximize the purity of data in the after-split
branches. We trained our DT model using the GINI im-
purity criterion. The optimal maximum tree depth ranged
from 3 to 5.

4.3.2 Random Forest
A Random forest [1] model is a collection of decision trees,
each of which is trained with a randomly sampled subset of
training instances and attributes. A Random Forest model
strives to achieve robust and superior performance by en-
sembling predictions from multiple decision trees. In our
study, we searched for the optimal hyperparameter values
for the number of decision trees, minimum samples at a leaf
node, and the minimum number of samples required to split
an internal node. Depending on individual models, their val-
ues ranged from 40 to 280, 1 to 5, and 2 to 12, respectively.

4.3.3 Logistic Regression
Logistic regression (LG) [12] classifies a binary dependent
variable (i.e., label) using a linear combination of the one
or more existing independent variables (i.e., features). For-
mally,

P (y = 1|x) = σ(wTx)

where x = (1, x1, x2, . . . , xd)
T are the dependent variables,

y∈{0, 1} is the dependent variable, andw = (w0, w1, . . . , wd)
T



Table 2: Regression Results of GRE Quantitative Score Percentile Prediction

Group Model
Training Test

MAE RMSE R2 MAE RMSE R2

Without TOEFL

(814 samples)

Lasso 9.12 12.67 0.38 9.56 13.25 0.31

Ridge 9.09 12.52 0.39 9.59 13.17 0.31

Kernel Ridge 8.42 11.56 0.48 9.66 13.28 0.30

Elastic Net 9.10 12.63 0.38 9.54 13.22 0.31

Average 8.93 12.35 0.41 9.59 13.23 0.31

With TOEFL

(300 samples)

Lasso 6.95 9.98 0.44 7.27 10.36 0.37

Ridge 6.68 9.62 0.48 7.43 10.60 0.34

Kernel Ridge 6.80 9.70 0.47 7.36 10.32 0.38

Elastic Net 6.93 9.97 0.44 7.26 10.36 0.37

Average 6.84 9.82 0.46 7.33 10.41 0.37

Table 3: Regression Results of GRE Verbal Score Percentile Prediction

Group Model
Training Test

MAE RMSE R2 MAE RMSE R2

Without TOEFL

(814 samples)

Lasso 17.82 21.73 0.24 18.42 22.40 0.17

Ridge 17.90 21.78 0.24 18.49 22.43 0.17

Kernel Ridge 17.65 21.50 0.26 18.62 22.63 0.16

Elastic Net 17.86 21.76 0.24 18.45 22.42 0.17

Average 17.81 21.69 0.25 18.50 22.47 0.17

With TOEFL

(300 samples)

Lasso 12.07 14.69 0.51 12.91 15.56 0.40

Ridge 11.89 14.52 0.52 12.67 15.38 0.41

Kernel Ridge 11.55 14.07 0.55 12.76 15.35 0.41

Elastic Net 11.97 14.61 0.52 12.81 15.45 0.41

Average 11.87 14.47 0.53 12.79 15.44 0.41

are the model coefficients. σ denotes the sigmoid function
σ(z) = 1

1+e−z which maps a number z ∈ (−∞,+∞) to

(0, 1). We experimented with different regularization pa-
rameter (α) and the models were trained with α = 1.

4.3.4 Neural Network
Neural networks (NN) [11] are computational models in-
spired by the architecture of neurons in a biological brain.
The nodes are divided into sequential layers with learnable
weights connecting the nodes across adjacent layers. The
first and last layers represent the model’s input and output,
respectively, and the middle ones are hidden layers. In this
study, we used a network with two hidden layers, which had
32 and 16 neurons, respectively. We applied ReLU activa-
tion and trained our models using the Adam optimizer with
a batch size of 64.

4.3.5 XGBoost
XGBoost [2] is a homogeneous ensemble method in which
the base learners are generated from a single machine learn-
ing algorithm, exploiting the concept of “adaptive boosting”
[6]. Unlike the traditional boosting technique, which adjusts
the penalty weight for each data point before training the
next learner, XGBoost fits the new learner to residuals of the
previous model and then minimizes the loss when adding the
latest model. The process is equivalent to gradient descent
converging to a local optimum. Our XGBoost models were
trained with a learning rate of 0.2. The optimal number of
iterations ranged from 5 to 50, depending on each specific

classification task. Similarly, the values for maximum depth
ranged from 1 to 7.

4.4 Addressing Imbalanced Data
Since our classification tasks aim to identify the top 20%
and the bottom 20% of applicants, the training data is im-
balanced with a class ratio of 1:4. Learning directly from
imbalanced data often leads to unsatisfactory performance
in the minority class when the machine learning algorithms
strive to minimize the global loss. To this end, we employed
the “bagging” technique [23]. In particular, k “bags” of bal-
anced datasets were created where each bag contained all
minority class instances and an equal number of randomly
sampled majority class instances. Each subset of major-
ity instances were sampled with replacement from the en-
tire majority population. Consequently, k sub-models were
trained using these balanced“bags”of data. The final model
predictions were made by using a majority vote on the sub-
models’ decisions. We selected optimal k as a hyperparam-
eter for each classification model.

5. RESULTS
In this section, we first present the experimental results of
our regression and classification models. We then analyze
the principal predictors identified by our models.

5.1 Regression Results
Table 2 presents our models performance in predicting GRE-
Q percentiles. The average mean absolute errors (MAEs) for



Table 4: Quantitative Percentile Classification Performance Comparison

Group Model Overall Accuracy Recall Specificity Precision F-1 AUC

Without TOEFL

(814 samples)

Top 20% vs. Rest

DT 0.61 0.60 0.61 0.30 0.40 0.67

RF 0.56 0.69 0.52 0.29 0.40 0.67

LG 0.58 0.67 0.55 0.29 0.41 0.65

NN 0.55 0.70 0.51 0.28 0.40 0.65

XGBoost 0.61 0.61 0.62 0.30 0.41 0.67

Average 0.58 0.65 0.56 0.29 0.40 0.66

Bottom 20% vs. Rest

DT 0.77 0.72 0.78 0.45 0.55 0.82

RF 0.76 0.82 0.74 0.44 0.58 0.84

LG 0.79 0.79 0.78 0.48 0.59 0.85

NN 0.79 0.80 0.78 0.48 0.60 0.83

XGBoost 0.79 0.80 0.79 0.49 0.61 0.85

Average 0.78 0.79 0.77 0.47 0.59 0.84

With TOEFL

(300 samples)

Top 20% vs. Rest

DT 0.69 0.58 0.72 0.40 0.47 0.70

RF 0.63 0.64 0.62 0.35 0.46 0.68

LG 0.67 0.68 0.66 0.39 0.50 0.72

NN 0.60 0.71 0.57 0.34 0.46 0.70

XGBoost 0.67 0.60 0.69 0.39 0.47 0.69

Average 0.65 0.64 0.65 0.37 0.47 0.70

Bottom 20% vs. Rest

DT 0.80 0.69 0.83 0.52 0.59 0.86

RF 0.74 0.79 0.73 0.43 0.56 0.88

LG 0.82 0.73 0.85 0.56 0.63 0.87

NN 0.79 0.69 0.81 0.49 0.57 0.84

XGBoost 0.81 0.76 0.82 0.52 0.62 0.87

Average 0.79 0.73 0.81 0.50 0.59 0.86

the general and international groups are 9.59 and 7.33, re-
spectively. Given that GRE score-percentile mappings are
not uniform and have large gaps [4], we believe an MAE
within 10% can be used as effective estimations. For exam-
ple, the score difference between 89% and 79% of GRE-Q
percentiles is only 4 (i.e., 167 vs. 163). Thus, we believe
all four machine learning models can be used to provide
a reasonable estimation of an applicant’s performance in
GRE quantitative reasoning, and Elastic Net demonstrates
a marginal advantage over the others three models.

Table 3 presents the models performance in predicting GRE-
V percentiles. The MAE for the general and international
groups are 18.5% and 12.79%, respectively. The GRE scor-
ing guide [4] shows that the gaps in verbal percentiles are in
general similar to the quantitative ones. Thus, our exper-
imental results suggest that our current features may not
be sufficient in providing effective estimations for an appli-
cant’s performance in GRE verbal reasoning. Perhaps this
is not too surprising, however, since the two degrees in ques-
tion rely more on quantitative abilities than on verbal abil-
ities, and the application materials submitted may respond
to that. We discuss potential improvements in Section 6.

5.2 Quantitative Classification
Table 4 presents the performance of our machine learning
models in identifying the top 20% and bottom 20% of appli-

cants based on GRE-Q percentiles. Our first observation is
that it is much harder to correctly classify the top 20% com-
pared to the bottom 20%. This is evidenced by the substan-
tially higher overall accuracy and AUC scores in the latter
task. Specifically, for the without-TOEFL group, the aver-
age overall accuracies for these two tasks are 58% and 78%,
respectively; the average AUC scores are 0.66 and 0.84, re-
spectively. Furthermore, this trend is consistent across both
without- and with-TOEFL cohorts. In Figure 3 we observed
that the distribution of GRE-Q percentiles is notably skewed
towards the right. As a result, it is not surprising that the
top 20% applicants are more challenging to identify than the
bottom 20%.

Our second observation is that the models’ performances are
consistently better for the international (i.e., with-TOEFL)
group. One explanation could be the increased model ex-
pressiveness from the additional TOEFL features. Another
underlying factor could be that most of our international
students are from one country (i.e., China) and, thus, the
data is more likely to form an i.i.d. distribution, which is
the fundamental assumption for most classifier-learning al-
gorithms.

Lastly, for the general group, five machine learning mod-
els offered similar performances in terms of AUC scores in
both classification tasks. Compared to other methods, XG-



Table 5: Verbal Percentile Classification Performance Comparison

Group Model Overall Accuracy Recall Specificity Precision F-1 AUC

Without TOEFL

(814 samples)

Top 20% vs. Rest

DT 0.75 0.52 0.82 0.46 0.49 0.75

RF 0.66 0.56 0.68 0.34 0.42 0.70

LG 0.71 0.59 0.74 0.40 0.47 0.74

NN 0.70 0.59 0.73 0.39 0.47 0.74

XGBoost 0.72 0.53 0.78 0.41 0.46 0.73

Average 0.71 0.56 0.75 0.40 0.46 0.73

Bottom 20% vs. Rest

DT 0.63 0.58 0.64 0.29 0.38 0.65

RF 0.57 0.63 0.56 0.23 0.37 0.63

LG 0.61 0.61 0.60 0.28 0.38 0.68

NN 0.62 0.56 0.63 0.27 0.37 0.65

XGBoost 0.70 0.54 0.74 0.34 0.42 0.68

Average 0.63 0.58 0.63 0.28 0.38 0.66

With TOEFL

(300 samples)

Top 20% vs. Rest

DT 0.81 0.80 0.82 0.54 0.65 0.87

RF 0.80 0.88 0.78 0.52 0.65 0.88

LG 0.79 0.86 0.77 0.50 0.64 0.88

NN 0.73 0.95 0.67 0.44 0.60 0.88

XGBoost 0.81 0.88 0.79 0.53 0.66 0.89

Average 0.79 0.87 0.77 0.51 0.64 0.88

Bottom 20% vs. Rest

DT 0.77 0.77 0.77 0.46 0.58 0.86

RF 0.76 0.85 0.74 0.46 0.60 0.86

LG 0.80 0.79 0.80 0.51 0.62 0.88

NN 0.79 0.84 0.78 0.50 0.62 0.87

XGBoost 0.77 0.82 0.76 0.47 0.60 0.87

Average 0.78 0.81 0.77 0.48 0.60 0.87

Boost demonstrated a more balanced performance between
the minority and majority classes. For the international
group, logistic regression led the performance in predicting
the top 20% of applicants in AUC score, which offered 68%
and 66% Recall and Specificity, respectively. In predicting
the bottom 20% of applicants, RF, LG, and XGBoost are all
excellent choices depending on the desired trade-off between
the Recall and Specificity.

5.3 Verbal Classification
Table 5 presents the performance of our machine learning
models in identifying the top 20% and bottom 20% of appli-
cants based on GRE-V percentiles. For the general group,
we observe that it is easier to identify the top 20% (aver-
age AUC: 0.73) than the bottom 20% of applicants (average
AUC:0.66). This trend is opposite to the GRE-Q results.
Figure 3 shows that the GRE-V percentile follows a close to
normal distribution skewed slightly to the left. Thus, it is
not surprising that the top 20% of applicants are easier to
identify.

We further observe that the models’ performances are signif-
icantly better for the international students. This outcome
is consistent with what we observed in the above GRE-Q
results, and we believe the same underlying factors could
have contributed to the discrepancies.

In terms of model performance, LG seems to provide the
highest practical value for the general group. Specifically,
LG delivered a balanced performance of (Recall:0.59, Speci-
ficity: 0.74) and (Recall:0.61, Specificity: 0.61) for the top
20% and bottom 20% tasks, respectively. For the interna-
tional group, all models can provide practical value. The
choice would depend on the desired trade-off between the
accuracies of the two classes.

5.4 Analysis of Principal Predictors
This section presents some interesting findings on statisti-
cally significant features identified by our regression models.
Specifically, we examined the p-value associated with each
variable in the LASSO, ridge regression, and Elastic Net
models and studied the common predictors from all three
models satisfying p-value <0.05. (i.e., 95% confidence inter-
val). Our findings are summarized as follows.

• Software skills (Python, Matlab, Statistics) and Un-
dergraduate GPA are positively correlated with GRE-
Q performance, while MS Office is negatively corre-
lated. The finding is consistent with our experience
with reading MSDS/MSCS applications. Applicants
that highlight MS Office as one of their key skills in
their resume tend to be compensating for a lack of soft-
ware skills, and generally lack the STEM background
necessary to succeed in our programs.



• Our models identified four essential features that are
positively correlated with GRE-V percentiles: Native
English Speaker, Undergraduate GPA, Machine Learn-
ing, and Linear Algebra. The first two are reason-
able factors, but the latter two are less intuitive. It is
only natural that students who are raised in English-
speaking countries will, on average, perform best on
the GRE-V exam; however, this highlights the bias in-
herent in such an exam and careful thought should be
given to using the associated scores in a responsible
manner. This is especially true if the type of English
verbal abilities measured by the exam are not essential
for the program the student is applying to. In these
cases, perhaps the TOEFL exam is more appropriate
and can suffice.

• With p-value<0.05, the models did not discover any
statistically significant features that are negatively cor-
related to GRE-V performance. If we relax the con-
dition, we found Statistics and Software are the two
negative predictors for verbal reasoning. One expla-
nation for this is that high achievers at GRE-V tend
to major in humanities and are less capable of STEM
skills (i.e., math and software)

• For the international group, the models found that all
TOEFL components played essential roles in predict-
ing GRE performance except for TOEFL Speaking.
In particular, TOEFL Reading and Listening are top
positive predictors for both GRE-Q and GRE-V, and
TOEFL Writing was an additional top predictor for
GRE-V. Our findings suggest that TOEFL compo-
nents can perhaps take on the role of the GRE as-
sessment if it is available.

• It is worth noting that Undergraduate GPA was not
an essential predictor for the international group even
after converting all grading systems to a 4.0 scale. One
possible explanation is the discrepancies in grading
standards across global universities.

6. CONCLUSION AND FUTURE WORK
In this paper, we studied the viability of predicting appli-
cants’ performance on GRE quantitative and verbal reason-
ing using demographic and quantitative information from
their application materials. Our experimental results sug-
gest that features extracted from standard application tem-
plates can provide practical estimations for GRE-Q per-
centiles but fell short for the GRE-V estimations. Future
work will be to determine how to look at textual mate-
rials such as students’ statement of intent (SOI) and let-
ters of recommendation (LORs) for more predictive signals.
For example, we conjecture that the quality of SOI, which
can be estimated via automated means, is predictive for the
GRE verbal/writing scores. We also evaluated the ability
to identify high-achieving (i.e., top 20%) and less-achieving
(i.e., bottom 20%) applicants. To this end, we employed five
classification models and the experiment showed convincing
results.

We further performed principal predictor analysis and shared
our findings. These findings provide insight into the applica-
tion components that are most relevant to the GRE scores,

and may help us to prioritize these components. It also high-
lighted that the GRE-V score itself has a potential (perhaps
obvious) bias towards those who were born in an English-
speaking country, and showed that the TOEFL could be a
valid replacement. It also showed that automatic extrac-
tion of pre-specified keywords on an applicant’s resume can
provide useful information for making admission decisions.

Although the performance of our approach is modest, our re-
sults demonstrate great promise in adopting machine learn-
ing approaches to estimate applicants’ missing GRE scores
using their available application information. Our classifi-
cation models can help identify top and bottom candidates
and, thus, serve as a focus of attention (FOA) tool for an
admission committee to render rejection and scholarship de-
cisions. We are highly motivated to continue this work be-
cause of the continued rise of MSDS/MSCS applicants at
X1 University and we hope to use ML to help decrease the
workload of the admissions committees.
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